iZwop® NFC

"The new iPhone Xs and Xs Max, as well as a colorful family of the new iPhone Xr handsets, include advancements in near-field communication (NFC) technology that allow the handsets to automatically read nearby NDEF (NFC Data Exchange Format) tags and send any collected assets to appropriate apps without needing to open any specific app beforehand."

Before this change, users were required start an NFC reader session from an app.

Learn more about NFC at the bottom of this page.

iZwop® NFC Networking Products

NFC Card + holder + lanyard

Branded with your company logo and your personal QR-code. Just hold near or "tap" with your smartphone and get the digital business card in seconds (NFC enabled smartphones). If your smartphone does not support NFC yet, just open your camera and scan the QR-code to get the digital business card.

1x included in the NFC STANDARD package2x included in the NFC PRO package

NFC Stickers

Branded with your company your personal QR-code. Just hold near or "tap" with your smartphone and get the digital business card in seconds (NFC enabled smartphones). If your smartphone does not support NFC yet, just open your camera and scan the QR-code to get the digital business card.

10x included in the NFC PRO package

NFC Bracelet

Perfect to use when attending more formal events. Unbranded, silicon bracelet containing your digital business card. Just hold near or "tap" with your smartphone and get the digital business card in seconds (NFC enabled smartphones only).

1x included in the NFC PRO package

iZwop® NFC Networking Packages Pricing

Delivery time

Digital business card - 48h
NFC branded, networking cards, bracelets and stickers - 6 - 8 weeks.

Order online above (tap on respective product) or contact Sales to get a quote.


What is NFC and how does it work

NFC is a mainstream wireless technology, thanks to the growth of online payment systems like Samsung Pay and Google Pay. Especially when it comes to high-end devices and even many mid-rangers. You’ve likely heard the term before, but what is NFC exactly? In this piece we rundown what it is, how it works, and what it can be used for.

NFC stands for “Near Field Communication” and, as the name implies, it enables short-range communication between compatible devices. This requires at least one transmitting device, and another to receive the signal. A range of devices can use the NFC standard and will be considered either passive or active.

Passive NFC devices include tags, and other small transmitters, that can send information to other NFC devices without the need for a power source of their own. However, they don’t process any information sent from other sources, and can’t connect to other passive components.  These often take the form of interactive signs on walls or advertisements.

Active devices are able to both send and receive data, and can communicate with each other as well as with passive devices. Smartphones are by far the most common form of active NFC device. Public transport card readers and touch payment terminals are also good examples of the technology.

How does NFC work?

Now that we know what NFC is, how does it work? Just like Bluetooth and Wi-Fi, and all manner of other wireless signals, NFC works on the principle of sending information over radio waves. Near Field Communication is another standard for wireless data transitions. This means that devices must adhere to certain specifications in order to communicate with each other properly. The technology used in NFC is based on older RFID (Radio-frequency identification) ideas, which used electromagnetic induction in order to transmit information.

This marks the one major difference between NFC and Bluetooth/WiFi. The former can be used to induce electric currents within passive components as well as just send data. This means that passive devices don’t require their own power supply. They can instead be powered by the electromagnetic field produced by an active NFC component when it comes into range. Unfortunately, NFC technology does not command enough inductance to charge our smartphones, but QI wireless charging is based on the same principle.

Electromagnetic fields can be used to transmit data or induce electrical currents in a receiving device. Passive NFC devices draw power from the fields produced by active devices, but the range is short.

The transmission frequency for data across NFC is 13.56 megahertz. You can send data at either 106, 212, or 424 kilobits per second. That’s is quick enough for a range of data transfers — from contact details to swapping pictures and music.

To determine what sort of information will be exchanged between devices, the NFC standard currently has three distinct modes of operation. Perhaps the most common use in smartphones is the peer-to-peer mode. This allows two NFC-enabled devices to exchange various pieces of information between each other. In this mode, both devices switch between active when sending data and passive when receiving.

Read/write mode, on the other hand, is one-way data transmission. The active device, possibly your smartphone, links up with another device in order to read information from it. NFC advert tags use this mode.

The final mode of operation is card emulation. The NFC device can function as a smart or contactless credit card and make payments or tap into public transport systems.

Comparisons with Bluetooth

So how does NFC compare with other wireless technologies? You might think that NFC is a bit unnecessary, considering that Bluetooth has been more widely available for many years. However, there are several important technical differences between the two that gives NFC some significant benefits in certain circumstances. The major argument in favor of NFC is that it requires much less power consumption than Bluetooth. This makes NFC perfect for passive devices, such as the advertising tags mentioned earlier, as they can operate without a major power source.

However, this power-saving does have some major drawbacks. Most notably, the range of transmission is much shorter than Bluetooth. While NFC has a range of around 10 cm, just a few inches, Bluetooth connections can transmit data up to 10 meters or more from the source. Another drawback is that NFC is quite a bit slower than Bluetooth. It transmits data at a maximum speed of just 424 kbit/s, compared to 2.1 Mbit/s with Bluetooth 2.1 or around 1 Mbit/s with Bluetooth Low Energy.

But NFC does have one major advantage: faster connectivity. Due to the use of inductive coupling, and the absence of manual pairing, it takes less than one-tenth of a second to establish a connection between two devices. While modern Bluetooth connects pretty fast, NFC is still super handy for certain scenarios. Namely mobile payments.

Samsung Pay, Android Pay, and even Apple Pay use NFC technology — though Samsung Pay works a bit differently than the others. While Bluetooth works better for connecting devices together for file transfers, sharing connections to speakers, and more, we anticipate that NFC will always have a place in this world thanks to mobile payments — a quickly expanding technology.

Learn more about the NFC technology, requirements and the functionality below.

Choose your device type:

Did this answer your question?