As a Complete Mathematics subscriber, you will be familiar with seeing several different metrics for communicating pupil attainment within the platform, whether it be our own MathsAge, GCSE grades or National 5.
But what lies behind these metrics and how are they assigned?
At La Salle, we are interested in the journey that a pupil takes in learning mathematics from counting through to calculus. As pupils learn more and their schema of knowledge develops, they become more and more ‘mathematically mature’.
Taking a view of the curriculum in terms of mathematical maturation is incredibly important if we are to provide pupils with a truly meaningful, interconnected view of mathematics.
As pupils mature mathematically, they move through phases, or levels, of typical dispositions, behaviours, knowledge and understanding.
Pupils are growing mathematically. And hopefully heading to becoming young mathematicians themselves, who will be inspired to continue to study, use and love mathematics well beyond leaving school.
Behind every element of Complete Mathematics is a sense of this ‘mathematical maturation’, which we communicate by considering the cognitive Demand Criteria Level (DCL).
The demand criteria are broad descriptions of mathematical maturation from the point of no mathematical education through to becoming a mathematician. It is not age related. It is not intended to be treated as a strict ladder of progression. Rather, the levels within the demand criteria aim to give a general sense of the capabilities and dispositions of a person learning mathematics as they reach stages of mathematical maturity.
The Complete Mathematics DCL range from Level 0 to Level 22, and these levels drive the metrics on the platform. You can find a detailed breakdown of the DCL levels & framework here.
Implementation of DCLs in Complete Maths
So, how do these cognitive Demand Level Criteria inform the attainment metrics in Complete Mathematics?
Our MathsAge has been carefully mapped against the DCL and against other useful metrics, including GCSE, National 5, Core Maths, A Level, Higher and more.
Let us take a look at how the DCL line up with some of our most commonly used metrics.
As you will be able to see, the DCL often span multiple grades in a metric system. It is not the intention to convey the sense that a DCL or a grade can be pinned down accurately to a certain question of task – many tasks span multiple DCL and grades are a reflection of the performance of the population. Rather, what we are interested in is the pupil’s own development as a mathematician, the knowledge and skillset they acquire along the way and how these are articulated through the way in which a pupil behaves mathematically.
So, perhaps the next time you are looking at the MarkBook inside the Complete Mathematics platform, you can notice the attributes and dispositions those individual pupils exhibit in the classroom and see them as maturing gradually and know that, no matter what their current stage, they can continue to grow to become a successful young mathematician.